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Abstract
We propose a high order numerical decomposition of exponentials of Hermitian
operators in terms of a product of exponentials of simple terms, following an
idea which has been pioneered by M Suzuki, implementing it for complex
coefficients. We outline a convenient fourth-order formula which can be written
compactly for an arbitrary number of non-commuting terms in the Hamiltonian
and which is superior to the optimal formula with real coefficients, both in
complexity and accuracy. We show asymptotic stability of our method for
a sufficiently small time step and demonstrate its efficiency and accuracy in
different numerical models.

PACS numbers: 02.60.Cb, 02.70.Tt

1. Introduction

While exponentials of operators are very common not only in every field of quantum physics,
but also in classical physics, their evaluation is nevertheless numerically a very demanding
operation. For example, in quantum physics, this task usually emerges when one wants
to compute a time evolution, either in real time, for example, when computing dynamical
correlations, or in imaginary time, when computing thermodynamic averages such as in
quantum Monte Carlo simulations. A similar decomposition of classical time evolution, which
can also be interpreted in terms of unitary operators, is known as symplectic integration.

For an operator which can be written as a sum of several parts of which exponential
operators are exactly determinable, the well-known Suzuki–Trotter [1–7] decomposition
scheme can be used. The operator eiz

∑
j Aj is approximated by a product of operators eizpkj

Aj

with real coefficients pk such that the desired order of accuracy is achieved. We will show
in the present paper that following the same principles but not restricting to real coefficients,
the same order can be achieved using a smaller number of factors. Furthermore, the order of
such a decomposition can be trivially increased by one by composing it with an equivalent
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decomposition with a complex conjugate set of coefficients. We will outline a particular third-
order scheme, and further improve to fourth order, which is potentially very useful for practical
calculations. We show explicitly that, even though we lose unitarity of decomposition (in a
real-time case), the method is asymptotically stable for sufficiently small time steps since all
the eigenvalues of the decomposition remain on the complex unit circle. Even more generally,
we show that one gains an extra order in accuracy and asymptotic stability (independent of
the size of the time step) by renormalizing the state vector after each time step.

We demonstrate the accuracy and efficiency of the method by three explicit examples:
(i) in the case of 2 × 2 matrices, the decomposition and its stability can be treated analytically;
(ii) for exponentials of Gaussian random Hermitian matrices, we find that the stability threshold
(the maximal time step for which the method is asymptotically stable) drops with the inverse
power of the dimension of the matrix and (iii) for a generic (non-integrable) interacting spin-
1/2 chain (in one dimension) we find, surprisingly, that the stability threshold is independent
of the number of spins.

2. Complex split-step decomposition

Our main objective is to approximate the exponential operator U0 = eiz(A+B), for general
bounded operators A and B, and a complex parameter z, as a product U of the exponential
operators

eiz(A+B) = eizp1A eizp2B eizp3A eizp4B eizp5A + O(z4). (1)

We stress again that A and B should be chosen such that, if possible, the action of the
exponentials eizA and eizB can be easily calculated (e.g. diagonal operators in simple bases
such as position or momentum bases in quantum mechanics). The equations determining
the coefficients {pj } that solve the equation above are obtained by expanding the exponential
operators into power series and equating the lowest order terms to zero. It is known that there
is no third-order (O(z4)) solution of the five-term ansatz (1) with real coefficients pj . The
simplest third-order decomposition involves six terms [5]. However, allowing the coefficients
pj to be complex, there exist two very simple and symmetric solutions, namely1

p1 = p5 = 1

4
+

√
3

12
i, p2 = p4 = 1

2
+

√
3

6
i, p3 = 1

2
(2)

and the complex conjugate set {pj }.
Let us denote an exact exponential as U0(z) = exp(iz(A + B)) and third-order complex

decompositions (C3), given by the rhs of (1) with coefficients (2), namely {pj } and {pj },
as U(z) and U(z), respectively. Using some further analysis (which has been performed by
means of Mathematica software), we can show that the next-order term changes sign when
one switches between the two solutions, namely

U(z) = U0(z) + K4z
4 + O(z5) and U(z) = U0(z) − K4z

4 + O(z5), (3)

where

K4 = i

144
√

3
((AAAB − BAAA) − 3(AABA − ABAA) − 3(AABB − BBAA)

+ 6(ABAB − BABA) + 2(ABBB − BBBA) + 6(BABB − BBAB)) (4)

is a Hermitian operator provided that both A and B are Hermitian.

1 It was quoted in [6] that this solution had already been proposed by AD Bandrauk; however, it was claimed in
[8] that the complex coefficient decomposition is unstable and cannot be practically used for splitting the unitary
exponentials, which we show is not precise.
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Figure 1. Schematic illustration of complex-valued split-step decomposition. The coefficients pj

can be considered as shifts in complex time plane, which always move along the real axis. Two
sets of complex coefficients {pi} give a third-order decomposition O(z4); their superposition is for
an order higher.

Superposition of the two decompositions cancels the z4 term and is therefore for one-order
higher, namely of fourth order. However, the same fourth order can be achieved by alternating
both decompositions (as illustrated in figure 1)

U(z)U(z) = U 2
0 + (U0K4 − K4U0)z

4 + O(z5) = U 2
0 + O(z5), (5)

since U0(z) = 1 + O(z). Since in usual numerical simulations of exponential operators,
for example, in quantum time evolutions, time-dependent renormalization group methods or
quantum Monte Carlo simulations, one needs to make many time steps anyway, the alternation
between U(z) and U(z) does not represent any practical drawback.

However, we note that with pi being complex numbers, the decomposition U(z) is no
longer strictly unitary (in the usual case where the operators A and B are Hermitian and the
time step z is real) and the time evolved state (on which U operates) might explode in norm
after a while. In order to strictly preserve the norm, the state (vector) may be renormalized at
every time step. One might be afraid that this renormalization would degrade the accuracy of
the method. However, due to the fact K

†
4 = K4 this is not the case; in fact, renormalization

increases the accuracy to the fourth order〈
U

†
0(z)U(z)

〉
√

〈U †(z)U(z)〉
= 1 + 〈K4〉z4 + O(z5)√

1 +
〈
K4 + K

†
4

〉
z4 + O(z5)

= 1 + O(z5). (6)

By 〈·〉 := 〈ψ | · |ψ〉 we denote the expectation value in some intial state vector |ψ〉. In
conclusion, the decomposition with one single set of complex coefficients pi (C3) is already
of the fourth order (O(z5)) if every time step is followed by renormalization of the state
(figure 2). As in any application, the computational complexity of performing the sequence of
exponential operators on a state vector U(z)|ψ〉 is dominating the normalization of the state,
this does not represent any drawback of the method. Still, as we will show later, the method
is asymptotically stable, for sufficiently small z even without the renormalization. Figure 2
shows real numerical errors in a model in which A and B are chosen as Gaussian random
Hermitian matrices, after performing two time steps with various decompositions described
above (using one (C3) or both sets of complex coefficients (C4), and with or without the
renormalization of the state) and compare it with the optimal third-order decomposition with
real coefficients (R3).
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Figure 2. An error after two time steps for the third-order real decomposition (R3), the third-
order complex decomposition (C3) and the fourth-order complex decomposition (C4); the label ‘r’
denotes renormalization after each time step. As for the numerical model, we choose A and B to
be GUE matrices of dimension N = 200 and average the results over 1000 realizations. We note
that renormalization does not change the accuracy in the unitary case with real coefficients; hence,
the curves (R3) and (R3-r) are practically the same.

We can easily generalize our approach to approximate exponentials of three or more non-
commuting bound operators. For example, for three operators, one has nine terms following
a sequence ABCBABCBA which is obtained from ABABA (1) by replacing each inner
operator B by BCB (and dividing the coefficient in front of B by two)

eiz(A+B+C) = eizp1A eizp1B eizp2C eizp1B eizp3A eizp4B eizp5C eizp4B eizp5A + O(z4), (7)

and using the same set of coefficients (2), or its complex conjugate. Generally, a formula for
a sum of n operators involves 4n − 3 terms

exp(iz(A1 + · · · + An)) = eizp1A1 eizp1A2 · · · eizp1An−1 eizp2An eizp1An−1 · · · eizp1A2

× eizp3A1 eizp5A2 · · · eizp5An−1 eizp4An eizp5An−1 · · · eizp5A2 eizp5A1 . (8)

It is interesting to note that the general optimal third-order solution with real coefficients (R3)
uses just one term more for the case n = 2, namely six, whereas for a general n case it needs
5n − 4 terms, which is n − 1 terms more than the complex solution above (8).

As we have mentioned before, without the renormalization complexity of the coefficients
may cause the exponential instability of the method. However, it turns out that the
decomposition is absolutely stable for enough small steps z. The reason for such an interesting
behaviour is that all the eigenvalues of the operator U(z) lie on a complex unit circle for
sufficiently small z, and this property grants the asymptotic stability even if U(z) is not
exactly unitary. There is typically a threshold, i.e. a critical value of zmax such that at z = zmax

two eigenvalues of U(z) collide and leave the unit circle and then the method ceases to be
asymptotically stable. Such a behaviour can be explicitly proven for operators chosen from
the space of 2 × 2 matrices (see the following section) and is conjectured in general.

3. Examples

First, let us consider a numerical example of calculating the exponential of H = A + B where
A and B are Gaussian random Hermitian matrices chosen at random from the Gaussian unitary
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Figure 3. The maximal size of the eigenvalue of the approximate evolution operator U(z). The
upper plot (a) shows the case of GUE matrices while the lower plot (b) shows the case of Ising
spin chain in a tilted magnetic field (see text). The different curves refer to systems of different
sizes (b), or different matrix dimensions (a). The insets show critical threshold zmax as a function
of the system size/matrix dimension.

ensemble [9]. We note that this example is only meant as a benchmark for presumably the
worst case performance of the method and does not provide any practical gain since calculating
the exponentials of A and B is not easier than calculating the exponential of H. Figure 3(a)
shows that the maximal size of the eigenvalue of U(z) is exactly equal to 1 until some point
described by the threshold step size zmax. Numerical results suggest the following dependence
of the threshold on the Hilbert space dimension N, zmax ∝ 1/Nα , with α ≈ 0.5, which we
believe is the worst case scenario for generic systems.

As a second example, we consider a non-trivial physical model where the matrices of the
operators A and B are very sparse and thus far from the full random matrix model, namely,
we consider time evolution in the quantum Ising spin 1/2 chain in a tilted homogeneous
magnetic field (e.g. recently considered in the context of heat transport [10]) described by the
Hamiltonian H = ∑N

n=1

{−Jσ z
nσ z

n+1 + gxσ
x
n + gzσ

z
n

}
. Here, σ

x,y,z
n , n = 1, . . . , Ns , represent
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a set of independent Pauli matrices. In figure 3(b) we show a very interesting result for this
model (in particular, for the parameter values J = 1, gx = 0.4, gz = 0.8 which lie in the so-
called quantum chaotic regime [10]), namely that the threshold step size zmax is asymptotically
independent of the size N = 2Ns of the system. We conjecture that this is in general true for
numerical simulations of finite (spin) quantum systems with local interaction, and as such our
method of simulation of time evolution should be very robust. As for the last example, we
make analytical consideration of the simplest case where our operators can be represented by
2 × 2 matrices. In order to understand the transition in the stability (collision of eigenvalues
of U(z) on the unit circle), one can generally parametrize the operators A and B by Pauli
operators σ j , j = 1, 2, 3,

A = a01 +
3∑

j=1

ajσ
j and B = b01 +

3∑
j=1

bjσ
j . (9)

The coefficients {aj } and {bj } are all real since the matrices A and B are Hermitian, and
furthermore, the matrices A and B can always be chosen traceless by setting a0 = b0 = 0
without losing generality. It is obvious that since det U = eizTrH , where H = A + B, that
decomposition (1) for two 2 × 2 matrices can also be expressed in terms of Pauli matrices and
some coefficients {gj }. Using the ansatz (1), we write

eizp1
∑

j aj σ
j

eizp2
∑

j bj σ
j

eizp3
∑

j aj σ
j

eizp4
∑

j bj σ
j

eizp5
∑

j aj σ
j = eiz

∑
j gj σ

j

. (10)

Of course, gj are no longer real in general. The eigenvalues of the operator U(z) = eiz
∑

j gj σ
j

are e±iz
√∑

j g2
j , which give the condition for the asymptotic stability: namely, the number

γ 2 = ∑
j g2

j should be real and positive, γ 2 ∈ R
+. In order to simplify the notation, let

us take γ = +
√∑

j g2
j and similarly write α =

√∑
j a2

j , β =
√∑

j b2
j , and introduce

normalized coefficients γi = gi/γ, αj = aj/α, βj = bj/β. The condition for asymptotic
stability now simply reads γ ∈ R. Using straightforward calculation, γ can be expressed as
γ = 1

z
arccos

(
1
2 Tr eiz

∑
i giσ

i )
and is, interestingly, only a function of the magnitudes α, β and

the z-projections α3 and β3:

γ (z) = 1

z
arccos Q(z), (11)

where

Q(z) = 1

8

((
1 − α2

3 +
(
1 + 3α2

3

)
cos(αz)

)((
1 + β2

3

)
cos(βz)

+
(
1 − β2

3

)
cosh

(
βz√

3

))
− 2α3(3 + α2

3)β3 sin(αz) sin(βz)

+ 2
(
1 − α2

3

)
cosh

(
αz

2
√

3

) ((
1 + β2

3

)
cos

(αz

2

)
cos(βz)

+
(
1 − β2

3

)
cos

(αz

2

)
cosh

(
βz√

3

)
− 2α3β3 sin

(αz

2

)
sin(βz)

))
. (12)

Now the stability condition reduces to |Q(z)| � 1. For small steps z, the expression Q(z) in
(12) can be written as a power series in z:

Q(z) = 1 − 1
6

(
α2 + β2 + 2a2

3 + 2b2
3 + 6a3b3

)
z2 + O(z4). (13)

It can easily be proven diagonalizing the quadratic form that the z2 term is always non-positive;
hence, the decomposition scheme is indeed always (for any aj , bj ) stable, for the small
steps z.
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Figure 4. Illustration of the stability threshold for 2×2 case. Since matrices are traceless, collision
of eigenvalues of U(z) takes place on the real axis. In the figure we plot Reγ (dashed) and Im γ

(full), as a function of z for the case α = β = 1 and α3 = β3 = 0.1.

Figure 4 illustrates how eigenvalues for the small steps z always lie on the unit circle in
the complex plane. When the step z is being increased, the eigenvalues are travelling along the
unit circle, one in a clockwise and the other in a counter-clockwise direction. At some point,
namely at z = zmax, a collision occurs and a pair of eigenvalues bounce off the unit circle; then
γ becomes complex. However, because of the restriction |det U | = 1 their product remains on
the unit circle. Our 2 × 2 matrices A and B are assumed to be traceless; therefore, collisions
always occur on the real axis and the eigenvalues are both real during the bounce.

4. Conclusion

We have proposed a simple explicit complex-coefficient split-step decomposition of an operator
exponential, based on Suzuki’s scheme, for a sum of arbitrary number of operators. As
compared to an optimal scheme with real coefficients, our scheme requires less terms for the
same order; furthermore, we can gain an extra order at no additional expense. Despite having
complex coefficients, the decomposition is always stable for a sufficiently small step size, and
can be stabilized by additional renormalization of the state vector.

We suggest that our method may be used in conjunction with other methods for efficient
time evolution of complex quantum systems (one application has already been done in [10]),
or interacting many-body quantum systems, such as for example, with time-dependent DMRG
methods [11–13] where efficient and accurate estimation of operator exponentials for short
time steps is one of the cruicial black-box operations.

On the other hand, the proposed method may also challenge the efficiency of high-order
split-step symplectic integration methods (e.g. [14]) for solving classical Hamilton equations.
Our method provides smaller and higher remainders for a smaller number of decomposition
factors at the cost of complex arithmetics. It would be particularly interesting to compare
our approach to (or perhaps even combine with) the recent optimized approach to symplectic
integration using higher order sub-propagators [15].
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